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Density functionals beyond the local
approximation

By L.J. Suam

Department of Physics, University of California, San Diego, La Jolla,
California 92093-0319, U.S.A.

A review of the current effort in improvement over the local density approximation
is given. Within the density functional theory, the exchange-correlation energy and
potential may be unambiguously defined. Based on the field theoretical expressions
for them, approximations for classes of systems and approximate evaluations for
specific solids are critically reviewed. Further lines of development are discussed.
Relation to the quasi-particle energies is explored.

1. Introduction

The density functional theory (Hohenberg & Kohn 1964 ; Kohn & Sham 1965) in the
local density approximation gives a simple way of utilizing the knowledge of the
exchange-correlation effects of the electron gas in real atoms, molecules and solids.
Through the effort of many workers in this field, the theory has been thoroughly
tested in a wide range of systems including atoms, molecules, solids and nuclei and
found particularly useful for ground-state properties (Schliiter & Sham 1982;
Lundqvist & March 1983; Parr & Yang 1989). There is of course room for
improvement. There are two separate aspects. One is the improvement of the energy
functionals for the ground-state properties. The other is how the energies of low-lying
excited states may be found within the context of the density functional theory.

In §2 the definitions of the exchange and correlation energy functionals and
potentials are given in the context of the density functional theory and the
motivation of the particular definitions is shown to be the transformation of a many-
particle problem to an effective one-particle one. This does not eliminate the
interacting particle physics but only moves it to the construction of the effective
potential. Section 3 reviews a formal expression for the exchange-correlation energy.
Section 4 explains the difference between the density functional exchange and the
Fock exchange in the Hartree-Fock approximation. Section 5 explores a number of
approaches that go beyond the local density approximation (LDA).

The low-lying excited state energies may be viewed as quasi-particle energies. The
density functional equation for constructing the ground-state density naturally has
a set of single-particle energies. Whether they can represent the quasi-particle
energies has been investigated. In general the two sets are not related. None the less,
the density functional theory is shown to be a useful framework to construct the self-
energy. The insulator or semiconductor band gap is a special case in which it is
related to the ground-state energies of the system and of the system with the
addition or removal of an electron. The discontinuity of the exchange-correlation
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482 L. J. Sham

potential on adding an electron in an insulator plays a prominent role in the
determination of the band gap (§6). The Fermi surface is formally not given by the
density functional eigenvalues but is in practice remarkably well approximated by
the LDA in a disparate range of metals (§7). The reason remains to be explored. The
final section summarizes the situation that improvement over the 1.DA involves
considerations of specific systems with the loss of the simplicity and universality of
the LDA.

2. Definition of the exchange-correlation energy functional

The density functional theory has three key features: (1) any property of a many-
electron system is a functional of the ground state density; (2) for a given external
potential, the ground state energy is a variational minimum at the correct density;
(3) the density is determined by a one-particle Schrédinger equation with an effective
potential.

In the consideration of the class of all many-electron systems, which share the
common attributes of the electron mass, Fermi statistics, and the same Coulomb
interaction between a pair of electrons, the position-dependent external potential
v(r), i.e. the potential experienced by each electron due to the fixed nuclei,
characterizes a particular system. A property of the system is said to be a functional
of v(r). In particular, the density n(r) is a functional of v(r), it being understood that
either the total number of electrons or the chemical potential is given. The theorem
of Hohenberg & Kohn (1964) asserts that the-external potential is a functional of the
ground-state density, apart from a trivial constant.

It follows that the ground-state energy is a functional of the density. It may be
separated into two terms:

E=T]|n]+Uln], (2.1)

where 7}[n] is the kinetic energy functional of a non-interacting electron system with
the same density distribution. By comparing the variational equation

8T./8n+8U/8n = p, (2.2)

4 being the chemical potential, with the corresponding one for the non-interacting
system, one arrives at the one-electron Schrodinger equation

[ =3V ven(n)]¥5(r) = € ,(r), (2.3)

which determines the density
n(r) = X O(u—e;) [y (r)|*. (2.4)
i

The effective one-electron potential is given by
Vepp(r) = U/ . (2.5)

Formally, the density functional theory has reduced the many-body problem to
the solution of a one-particle Schrodinger equation. The many-body problem now
consists in the construction of the energy functional U[n] or its functional derivative
Vers(7). The procedure necessitates no explicit construction of the single-particle
kinetic energy functional 7}[n], although such constructions have been considered
(Herring 1986).
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Density functionals beyond the local approximation 483

Again, in Uln] we may separate out the terms which we know, namely the
potential energy due to v(r) and the electrostatic energy due to the electron charge

distribution
Uln] = Jdrv fdr jdr fdr n(r)——n(r) + By ], (2.6)

and name the remainder the exchange-correlation energy ¥, [n]. The corresponding
effective potential is composed of:

Vepp(#) = 0(7) +fdr’

2
|r—7'|

i.e. the external potential, the electrostatic potential due to the electronic charge
distribution, and the exchange-correlation potential

xe(1) = 88y /dn(r). (2.8)

In this way, the exchange-correlation term is unambiguously defined and at the same
time the motivation of the separation, to isolate the single-particle kinetic energy,
is made clear. However, without a more explicit expression for the exchange-
correlation potential or energy, the term is given a certain mysterious shroud. We
discuss next a formal construction.

n(r") + vy (1), (2.7)

3. A formal construction of exchange and correlation energy

It is possible to construct a perturbation series in powers of the Coulomb
interaction. In the density functional theory, the unperturbed state is the non-
interacting electron state which produces the same ground-state density as the exact
one. The same effective potential v (r) holds for the unperturbed and exact states.
Then a coupling constant integral for the exchange-correlation energy functional can
be derived (Harris & Jones 1974). An alternative of making the density at every
intermediate coupling constant value equal to the exact density (Gunnarsson &
Lundqvist 1976) simplifies the expression sufficiently to see the physical picture of
an exchange-correlation hole. In actual practice of an approximate evaluation, the
unknown coupling constant dependence is difficult to account for and is generally
neglected without justification.

From the Harris—Jones choice of the unperturbed state, the coupling constant
integral can be formally evaluated into a perturbation series (Sham 1985):

B [n] =iTr[In (1—2G,)+ZG]+7Y, (3.1)

where (¢, and  are the unperturbed and exact one-electron Green’s functions, 2" is
the exchange-correlation part of the self-energy, trace Tr is taken over position and
energy, and Y is the sum of all skeleton diagrams for the exchange-correlation energy
in terms of G. Functional differentiation yields an integral equation for the exchange-
correlation potential:

Jdr’vxc(r')[fdwﬂ (r,7";0) G r; (u]

Jdrl jdrz de(’ (r, 7y 0) Z(ry, 7y50) G(ry, 75 0). (3.2)
Thus the exchange-correlation potentlal is expressed in terms of the one-particle
ireen’s function and self-energy. To treat the magnetic systems, the density has to
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484 L. J. Sham

be extended to two spin components. The extension of the expression for v, to the
spin case has been given by Ng (1989).

For a confined system, the solution of the integral equation has the correct
asymptotic behaviour (Sham 1985). It is interesting that the dominant contributions
for the asymptotic behaviour for an atom and for a metal surface are different. At
a large distance r from an atom, the limit

Uxo(r) ~ €7 (3.3)

is dominated by the exchange term (defined in the next section). At a large normal
distance z outside the metal surface, the limit

Vyo(?) ~ —€2/4z (3.4)

comes entirely from the correlation term, specifically the surface plasmon
contribution to the correlation energy.

4. Density functional exchange

To first order in the Coulomb interaction, the exchange energy is from equation

(3.1) { o2
B n] = ~1 jdr jdr’mn(r, r)yn(r’,r), 4.1)

where the one-particle density matrix is given in terms of the density functional
orbitals of equation (2.3):

n(rr') = B 0u—e) yr () Y0, (4.2)

summing over both spin states.

The corresponding equation of the exchange potential v (r) is exactly the same as
the local potential yielding orbitals which minimize the Hartree-Fock energy (Sharp
& Horton 1953). Thus £, [n] is close to the Hartree-Fock exchange energy but is not
identical to it. In the density functional theory, the exchange potential v (r) exists
on its own right rather than is a local approximation to the non-local Fock potential.
Consequently, the density functional correlation energy K [n] is not the same as
the correlation energy defined as the difference between the total energy and the
Hartree—Fock energy.

5. Approximations for the exchange-correlation

The approximation (Kohn & Sham 1965) which makes the density functional
theory widely used is the Lpa:
ERA = [dreg(n(r)n(r), (5.1)

Le. in a small neighbourhood the exchange-correlation energy density is given by
the corresponding term e,,(n) of the homogeneous electrons gas at the local density.
The LDA potential is given by

UM (1) = phe (1)), (5.2)
the exchange-correlation part of the chemical potential of the homogeneous electron
gas. The guiding principle is clearly that of the Thomas—Fermi approximation. The
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Density functionals beyond the local approximation 485

difference lies in that the LDA does not approximate the kinetic energy term 7 n],
which gives the advantage of retaining the major quantum features such as the
density oscillations. In the exchange-correlation part, the Lpa suffers from the same
disadvantages as the Thomas—Fermi approximation, such as the lack of the gradient
correction and the incorrect treatment in the decaying region where the energy is
lower than the potential. The latter is largely responsible for the incorrect asymptotic
behaviour of LbA in a confined system.

Because LDA is shown to account for much of the exchange-correlation effect in a
wide range of inhomogeneous systems, any improvement should keep the advantage
of LbA. The non-local correction to LDA proposed by Langreth & Mehl (1983) retains
the L.pA and adds a gradient term based on an analysis of the small wave-vector
behaviour of the exchange-correlation energy. The correction appears to improve
the surface energy of the jellium. In tests for small atoms where the exact results
are known (Pedroza 1986), the correction improves over LbA on total energy and
density. For larger atoms, Langreth & Mehl (1983) have found the density functional
eigenvalues of equation (2.3) far from the exact values, but the energy differences to
be in good agreement, from which they inferred that the error in the exchange-
correlation potential is almost constant over the atom. For bulk silicon, the theory
gives improved values for the ground-state properties, such as cohesive energy,
equilibrium volume, and bulk modulus but essentially the same band gap as LpA
(U. von Barth & R. Car 1987, personal communication). The band gap problem arises
because the gradient correction does not yield the essential discontinuity in v,,. (See
the next section.)

A different approach (Gunnarsson & Jones 1980) is to construct a better exchange-
correlation hole in the pair correlation function than that which reproduces the Lpa
for the energy functional. The pair correlation appears in the coupling constant
integral for the exchange-correlation energy. The construction of the so-called
weighted density approximation is made to satisfy the sum rules. In atoms, it yields
better total energy than LpA but not better density nor density functional
eigenvalues (Pedroza 1986). It gives much too large a surface energy for the semi-
infinite jellium.

A third approach is to construct approximations based on the field theoretic
expression for v,,, equation (3.3). Use of the Lpa for the self-energy and Green’s
function (Sham & Kohn 1966) recovers Lpa for v,,. The equation with exchange only
has been solved for atoms (Aashamar et al. 1978). A simple form of v,, which was
suggested by Sharp & Horton (1953) follows from putting the electron energy ¢, in
one of the pair of Green’s functions on each side of equation (3.3) to a constant. The
advantage over LDA is the correct asymptotic behaviour. The disadvantage is that
it does not reduce to LA in the slowly varying density limit which means that it does
not have the well-tested aspects of Lpa. A form suggested by Sham (1985) is to
average the self-energy over the Fermi surface for a metal and over the highest
occupied density functional orbitals in an insulator. It would reduce to LDA in the
slowly varying density limit and would have the correct asymptotic limit away from
the surface of a confined system. It has, however, not been numerically tested.

Solution of equation (3.3) for v, depends on the construction of a self-energy. This
has been done for diamond, silicon, GaAs and AlAs (Godby et al. 1988). The self-
energy is evaluated in the random phase approximation (rpa) in a self-consistent
procedure starting with orbitals in Lpa. The resultant v, is quite close to the LpA
potential if the corresponding RPA is used for the homogeneous electron gas. We
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486 L. J. Sham

expect that if the self-energy were evaluated beyond rpa the resultant v,, would be
still close to the T.pA with the accurate p,, in the electron gas given by Ceperley &
Alder (1980). Why would one need the density functional theory if one has to
construct the self-energy ? The rpa work on v, , shows that it is advantageous to start
with the LpA orbitals. Hartree—Fock orbitals, for example, in general would be a poor
starting approximation in solids and would in addition be much more difficult to
obtain.

6. The band gap problem and discontinuity in v,

Against the wide-ranging success of LpA in ground-state properties, the uniform
lack of agreement between LDA and experiment on the band gaps in semiconductors
and insulators is striking. LDA values are always smaller than experiment, roughly
different by a factor of two. Two possible sources of error are the Lpa for v, and the
use of the eigenvalues of the density functional equation (2.3) for the energies of the
excited states.

In semiconductors, the v,, calculated beyond Lpa using rpa for the self-energy
as described in the last section (Godby et al. 1988) yields a band gap only slightly
bigger than the Lpa gap. The Lpa potential is sufficiently accurate that the large
discrepancy in band gaps cannot come from this approximation.

In general, the eigenvalues ¢; from the effective one-particle equation (2.3) with the
exact exchange-correlation potential v, do not represent the energies of the excited
states. Although the band gap may be expressed in terms of excited state energies,
it does have a special relation to the lowest energy states of N+ 1 particles in the same
insulator with an N-particle ground state. The highest occupied density functional
eigenenergy does represent the valence band edge in the insulator or semiconductor
case. The band gap of an insulator or a semiconductor can be defined precisely in
terms of the ground-state energy as a function £, of the number of particles M. If
the insulating ground state has N particles, the conduction band edge is the change
of the total ground-state energy when an electron is added and the valence band edge
is given by the change when an electron is removed:

E,=Ey,,—E,, (6.1)
E,=Ey—E,_,. (6.2)

The band gap is naturally the difference:
E,=E.—E,. (6.3)

It is straightforward to show (Sham & Schliiter 1985) from the definition of £, and
with the help of the variational theorem that the valence band edge is given by the
highest occupied density functional eigenenergy :

B, =ey. (6.4)

Now, the Hohenberg—Kohn theorem is implicitly for a fixed number of electrons, M.
Equation (2.3) and v, are implicitly defined as functions of M. Since M = N gives the
insulating ground state, when an electron is removed, the highest occupied state is
changed by a negligible armount [O(1/N)] and v, (N—1) is the same as v, (V) but
when an electron is added across the gap, the (N+1)th state is very different and
there is a discontinuity in v, as Nis changed to N+ 1 (Sham & Schliiter 1983 ; Perdew
& Levy 1983):

VeV +1) = 0 (V) + Ay (6.5)
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Density functionals beyond the local approximation 487

where 4, is independent of position. It follows that the difference between the true
gap, equation (6.3) and the density functional gap given by

€g = Ent1 €N (6.6)

is just the potential discontinuity, 4.

A persuasive demonstration of the importance of the discontinuity is the
calculation of the discontinuity for a number of semiconductors in RPA (Godby et al.
1988). rra for the Green’s function using the Lba basis set (Hybertsen & Louie 1987)
has been shown to give very good band structures for a number of semiconductors,
including the band gaps. The density functional potential for a number of
semiconductors, diamond, Si, GaAs, and AlAs, calculated (Godby et al. 1988) from
the self-energy in rRPA by iteration from LpA is then used to construct the Green’s
function in RpA and to determine the quasi-particle energies. The band gaps are in
good agreement with experiment and the v, discontinuity accounts for a major part
of the correction.

7. The Fermi surface problem

The Fermi surface problem is the counterpart of the band gap problem for
conductors. The highest occupied energy in the density functional equation (2.3) can
easily be shown to be the energy for adding an electron to a metal and is thus
the chemical potential. The problem is whether the Fermi surface given by the
eigenenergies of equations (2.3) is the same as the true Fermi surface. The true Fermi
surface can be constructed from the one-particle Green’s function which gives the
quasi-particle energies. The Lpa-like approximation for the Green’s function (Sham
& Kohn 1966) yields the same Fermi surface as equation (2.3). Thus, for the case of
slowly varying density, the density functional Fermi surface from equation (2.3) is
the same as the true Fermi surface. This includes the special case of constant density,
where the isotropy of the system ensures both Fermi surfaces to be spherical and
where the same total number of electrons enclosed by the Fermi surfaces guarantees
the radius to be the same.

Mearns (1988) has demonstrated that the density functional Fermi surface and the
true Fermi surface differ to second order in the lattice potential and first order in
the Coulomb interaction. This roughly corresponds in the semiconductor case to the
demonstration of the discontinuity of v, existing in the Hartree-Fock approxi-
mation (Sham & Schliiter 1985). Examples abound demonstrating that the Lpa
Fermi surfaces are very good approximations to the measured ones, even for
hybridized f bands (Koelling 1982; Johanson et al. 1983). What is needed is first a
demonstration of the likely event that the Lpa Fermi surface is a good approximation
to the density functional Fermi surface and then a theoretical understanding of the
difference of the density functional Fermi surface and the true one and of the reason
for the small difference.

8. Summary

For the ground-state properties, the density functional theory reduces the solution
of the many-electron Schridinger equation to that of an effective one-electron
Schridinger equation, requiring the construction of an exchange-correlation
potential. The Lpa offers simplicity and universality in the sense that only a
knowledge of the exchange-correlation effect of the homogeneous electron gas as a
function of density is needed as input. Approximations such as the inclusion of
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488 L. J. Sham

a gradient correction or a better pair correlation yield improvement in limited
instances. For characteristics such as the potential discontinuity in the insulating
system, construction of the self-energy for the particular system appears necessary.
Simplified approximations for the self-energy (Hanke & Sham 1988) may facilitate
computation of v, but their accuracy requires extensive testing. A particularly
interesting direction would be to utilize the knowledge acquired from the still
developing research on models of strong correlation of narrow band electrons to
construct functionals for more general solids.

For quasi-particle energies, the density functional eigenvalues, especially the Lpa
values, form a convenient approximation though unjustified. To include the
exchange-correlation effect properly, there is no avoiding the construction of the
self-energy. RPA has been shown to be adequate for the band structures but not total
energies in the covalent semiconductors. For metals, as in jellium, corrections to RPA
are important (Hybertsen & Louie 1987). The Lpa orbitals form a good starting basis
for the construction of the self-energy but it appears that to improve on LpA a simple
universal approximation may no longer be adequate.

I acknowledge the benefit of helpful discussions from many persons, especially my collaborators,
R. Godby, W. Kohn and M. Schliiter, over the years. This work is supported in part by NSF Grant
no. DMR 88-15068.
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Discussion

Z. Revur (City University, London, U.K.). It may be more appropriate to define the
psuedo- or effective potential by an integral, rather than by the usual gradient that
might not exist, or be of a dubious meaning in the case of many-electron systems. The
effective potential in such cases can be velocity dependent and subject to relativistic
effects.

L. J.Suam. For a physical system, small changes of the electron density generally
produce small changes in B _,[n] (except across the band gap of a semiconductor).
Therefore, 8, [n]/dn is well defined. For a semiconductor, it is well defined for
either side of the hyperface of the constant total electron number.

J. W. WiLkins (Ohio State University, U.S.A.). In strained superlattices — such as
GaAs/GalnAs grown in the [I1I] direction — there are large, strain-induced, electric
fields of order 10° V em™ or 1 meV A™!. Can density functional theory adequately
explain excitations between the valence and conduction bands in such a situation ?

L. J. SHAM. The band structure computation itself at the present stage is unable to
reproduce accurately the band edge features in the meV range. It is, therefore,
necessary to use the effective mass theory with the relevant band edge position and
curvature taken from experiment.

V. HeiNg (Cambridge, U.K.). Professor Sham emphasized the corrections beyond the
LDA to band gaps, where there are experimental data to compare with. That is
natural, but I wonder whether in the long run some chemical effects may not be more
important. For example in a transition metal, the exchange and correlation hole seen
by a d electron will be quite different from the hole seen by an sp electron, unlike the
situation in LDA. Thus the relative position of the sp and d band will be incorrect,
which in turn affects the amount of hybridization. Similarly in high 7, super-
conductors, much hangs on the balance between the Cu 3d level and the oxygen 2p
level, which one cannot expect to give well by the LpA.

L. J. Suam. For the states close to the Fermi level, the density functional theory
(pFT) gives quite good Fermi surface even though not exact. So improvement from
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the construction of the prr self-energy should be small. But for deeper levels, such
as the sp and d band separation, the construction of the one-particle Green’s function
iS necessary.

L. M. Faricov (University of California, Berkeley, U.S.4.). For moderately correlated
systems (ferromagnets, antiferromagnets) the prr gives qualitatively the correct
Fermi surface only if the correct symmetry breaking is considered from the start. For
highly correlated heavy fermions, where symmetry breaking normally takes place
and is much more subtle, why does Professor Sham ‘hope’ to obtain the correct
Fermi surface ?

L. J. SHaM. LDA has given Fermi surfaces even in heavy Fermion metals quite close
to the measured ones. One needs to understand the reason.

D. M. Epwarbps (Imperial College, London, U.K.). Professor Sham discussed the
formulations of the exact exchange correlation potential using perturbation theory.
Since even the exact functional does not give the exact Fermi surface isn’t there a
problem with the anomalous diagrams of Kohn and Luttinger ?

L. J. Suam. No, in the perturbation expansion starting from the density functional

Green’s function (), one can avoid the anomalous diagrams by keeping the
unperturbed and perturbed Fermi levels the same, which they naturally are in pFr.

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

